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Abstrat. Least-squares spetral element methods are based on two im-portant and suessful numerial methods: spetral/hp element methodsand least-squares �nite element methods. Least-squares methods lead tosymmetri and positive de�nite algebrai systems whih irumvent theLadyzhenskaya-Babu�ska-Brezzi stability ondition and onsequently al-low the use of equal order interpolation polynomials for all variables. Inthis paper, we present results obtained with a parallel implementation ofthe least-squares spetral element solver on a distributed memory ma-hine (Cray T3E) and on a virtual shared memory mahine (SGI Origin3800).
1 IntrodutionFor many engineering ow problems, the least-squares priniples o�er severaltheoretial and omputational advantages in the algorithmi design and imple-mentation [1, 2, 3, 4℄ of the orresponding �nite element methods, advantagesthat are not present in standard Galerkin based disretization. In partiular, theleast-squares formulations lead to symmetri and positive de�nite algebrai sys-tems [5℄ whih irumvent the Ladyzhenskaya-Babu�ska-Brezzi stability onditionirrespetive of the underlying partial di�erential equations. Due to these advan-tages, least-squares �nite element methods are beoming inreasingly popular tosolve the Stokes [6, 7, 8℄ and Navier-Stokes equations [9, 10, 5℄.Least-squares spetral element methods (LSQSEM) seem very promisingsine these methods ombine the generality of �nite element methods with theauray of the spetral methods and also the theoretial and omputationaladvantages in the algorithmi design and implementation of the least-squaresmethods. In [11, 12℄, the auray of a least-squares spetral disretization of theStokes problem (ast in veloity-vortiity-pressure form) has been reported for??? Funding for this work was provided by the National Computing Failities Foundation(NCF), under projet numbers NRG-2000.07 and MP-068. Computing time was alsoprovided by HP�C, Centre for High Performane Applied Computing at the DelftUniversity of Tehnology.



di�erent boundary onditions. The interested reader is referred to these papersfor a sound disussion regarding the least-squares spetral element formulationof the Stokes problem, the gathering proedure and the e�et of the boundaryonditions on the formulation. The present paper deals with eÆient parallel so-lution strategies to solve the algebrai systems resulting from the least-squaresspetral element formulation of the Stokes problem.Parallelization of the least-squares �nite element methods seems to be straight-forward by using element-by-element tehniques [1, 4℄. However, this is not thease with least-squares spetral element methods sine two di�erent kinds ofdistribution of data are required and the onversion is rather ompliated. Thespetral element struture enables to alulate the loal matries orrespondingto eah spetral element, simultaneously. Obviously, if the number of availableproessors is muh larger than the number of spetral elements, many proes-sors beome idle unless the data of a single spetral element will be omputedalong several proessors. In the present paper, we onsider a spetral element,also alled a ell, as the smallest omputational unit. The parallel solution of thealgebrai problem, a large, global sparse system, requires a ompletely di�erentdata distribution.The present paper is organized in the following way. In Set. 2, some imple-mentation aspets of least-squares spetral element methods are treated. Theprogram struture and parallel implementation are disussed in Set. 3. The re-sults of the numerial simulations are disussed in Set. 4. Conlusions are givenin Set. 5.
2 Implementation aspets of least-squares spetralelement methodsThe domain is disretized with a mesh of k non-overlapping onforming quadri-lateral spetral elements of the same order. As disussed in [11, 12℄, eah quadri-lateral spetral element is �rst mapped on the parent spetral element and thenthe loal systems Aizi = fi; with i = 1; � � � ; k (1)are alulated. The matrix Ai represents the least-squares spetral element dis-retization of the governing equations of spetral element i and the vetors ziand fi represent the orresponding loal variables and the right-hand funtion,respetively.In Fig. 1 an example is given of a domain disretized with a mesh of fourspetral elements. Eah spetral element ontains nine loal nodes, numberedfrom 1 to 9 (small-size digits). In the same �gure, also a global numbering(normal-size digits) is shown. First, the internal nodes or variables are num-bered (1; � � � ; 9), then the knowns (10; � � � ; 25) given by the boundary onditions.Sine eah loal variable orresponds to a global variable, one an establish theloal-global mapping operator gmI for eah spetral element. For the given ex-
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Fig. 1. Example of loal and global numbering. The domain has been divided into fourells: I, II,III, IV. Eah ell ontains 9 nodes, denoted by a Æ.
ample, we have gmI = [ 10; 11; 12; 19; 1; 2; 20; 4; 5 ℄;gmII = [ 12; 13; 14; 2; 3; 15; 5; 6; 16 ℄;gmIII = [ 20; 4; 5; 21; 7; 8; 22; 23; 24 ℄;gmIV = [ 5; 6; 16; 8; 9; 17; 24; 25; 18 ℄: (2)
The loal-global mapping operator gmI an also be expressed by the sparsegathering matrix Gi whih has nonzero entries aording to Gi(i; gmI (i)) =1; I = I; � � � ; IV. The global assembly of the k loal systems (1) an now readilybe obtained with: KU = F , " kXi=1 GTi AiGi#U = kXi=1 GTi fi. (3)where the matrix K represents the symmetrial globally gathered matrix of fullbandwidth and the vetors U and F represent the global nodes (e.g., variablesand knowns) and the global right-hand side funtion, respetively.Sine the known nodes are numbered last, one an subdivide the vetor Uinto an unknown omponent U1 and a known omponent U2. Consequently, thematrix K an be fatored into submatries K1;1, K1;2, KT1;2 and K2;2. Also thethe right-hand side vetor F an be fatored into the submatries F1 and F2.Hene, system (3) has the following matrix struture�K1;1 K1;2KT1;2 K2;2 � �U1U2 � = �F1F2 � ; (4)



whih readily allows "stati ondensation\ of the knowns, leading to the followingsparse symmetri and positive de�nite systemK1;1U1 = F1 �K1;2U2 . (5)System (5) will be solved in parallel with the onjugate gradient method.
3 Program struture and parallel implementation3.1 Redistribution of data due to renumberingAfter we have built up the grid ompletely and after the alulation of theloal systems (1), we have to swith from loal numbering to global numberingas disussed in Set. 2. As a result, we obtain a global CSR-matrix whih aneasily be distributed long an arbitrary number of proessors. Eah proessor hasto send data from one ell to a few other proessors or possibly to itself, a veryunbalaned task due to the hosen numbering. However, if this task is ompleted,eah proessor ontains a part of the global assembled matrix (3), and the dataper proessor will be balaned again.Let us return to the example grid of Fig. 1. If we onsider only the internalnodes and investigate the ase of four proessors, then before redistributionproessor p0 orresponds to ell I, p1 to ell II and so on. After the rearrangementof the data, p0 ontains the �rst three rows of matrix K of (3), p1; p2 and p3eah two rows. The distribution is as follows:p0( ell I) ) p0(N1; N2); p1(N4; N5);p1( ell II) ) p0(N2; N3); p1(N5); p2(N6);p2( ell III)) p1(N4; N5); p2(N7); p3(N8);p3( ell IV) ) p1(N5); p2(N6); p3(N8; N9): (6)
3.2 Parallel Conjugated Gradient PerformaneSine system (5) is symmetri and positive de�nite, the onjugate gradient (CG)method an be applied diretly. The performane of this iterative solution strat-egy for least-squares �nite element approximation of ow problems on distributedparallel omputers is learly of relevane to omputational uid dynamis. In thisreport, we desribe results with the simple, easy to parallelize, Jaobi or diagonalpreonditioning. At this moment, we test the eÆieny of other preondition-ing shemes for the inompressible Navier-Stokes problem: blok-Jaobi, SSOR,FEM-matrix and Additive Shwarz and their parallel possibilities. The latterseems to be a good andidate.Having assembled the system loally in parallel, solution by CG iterationinvolves repeated matrix-vetor produts, dot produts and DAXPY operations.More spei�ally, eah iteration involves one matrix-vetor produt, two dotproduts, two DAXPY and one DAYPX operations (y = y + �x; y = x+ �y). Loaldot produts are omputed in parallel on the proessors and the salar results



are aumulated aross the proessors using global summation followed by abroadast. The ommuniation of the dot produt will inrease logarithmiallywith inreasing number of proessors. The matrix-vetor produts, whih learlyrequire the greatest fration of the omputation, are omputed in parallel.Consider the matrix-vetor produtY = � A X + � Y; (7)where A is stored in Compressed Row Storage mode. A fast method to parallelizethis operation is to divide matrix A and vetor Y into equal parts for the sakeof a good load balaning. For the matrix A this means that eah proessor getsthe same number of rows mp, following the next distribution:mp = m=p; (8)if m, the number of rows of A, is a multiple of the number of proessors p. If not,whih will be true in most ases, some adjustment of this approximate proespartitioning will be needed and the number of grid points per proessor mayvary slightly. We assume that eah part has a omparable number of nonzeroelements. The omplete vetor X must be available on eah proessor.
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AFig. 2. Parallel distribution of matrix A and vetor Y , along 8 proessors
The CSR-matrix A of Fig. 2 is de�ned asTYPE,PUBLIC :: matve_srREAL(DOUBLE), DIMENSION(:), POINTER :: FKEINTEGER, DIMENSION(:), POINTER :: JFKEINTEGER, DIMENSION(:), POINTER :: IFKEINTEGER :: no_rowsEND TYPE matve_sr



Then on eah proessor the matrix A an be delared as:TYPE(matve_sr) :: A,where A%FKE ontains the nonzero values at the proessor involved, where theINTEGER array A%JFKE ontains their olumn numbers and where A%IFKE(i+1)-A%IFKE(i) denotes the number of nonzeros of row i on that partiular proessor.
4 Numerial resultsIn (least-squares) spetral element appliations, two di�erent kinds of re�nementstrategies are ommonly used: h-re�nement and p-re�nement. The purpose of thenumerial simulations is to hek the parallel performane for both re�nementstrategies. To this end, the least-squares spetral element formulation of theveloity-vortiity-pressure formulation of the Stokes problem is demonstratedby means of the smooth model problem of Gerritsma-Phillips [13℄ with v = 1.This model problem involves an exat periodi solution of the Stokes problemde�ned on the unit-square ([0; 1℄ � [0; 1℄). The veloity boundary ondition isused for all the numerial simulations. The pressure onstant is set at the point(0; 0). The h� and p�grids used in the present paper orrespond to the grids in[11, 12℄.
4.1 The h- and p-re�nement approah and its parallel performaneSix di�erent grids are used to hek the parallel performane of the h-re�nement.As an be observed in Table 1, the polynomial order of all the spetral el-ements equals 4, whih means that eah diretion has four Gauss-Legendre-Lobatto(GLL) olloation points, and the number of spetral elements is variedfrom 4 to 144. For the moment, we onsider a ell as the smallest omputationalunit. Obviously, an inrease of the number of ells allows to use more proessors,and the parallel eÆieny will grow. In ase the number of proessors is less thanthe number of ells, one or more proessors will ompute data of more than oneell.In the middle olumn of Tables 1 and 2 the order of the large sparse globalsystem is given together with the number of iterations required to solve this sys-tem using CG. The parallel solution of the systems may give a slightly di�erentnumber of iteration steps. The right olumn in the Tables lists the L2 norm ofthe di�erent omponents, like the veloity (L2 norm of x� and y�omponentsagree), the vortiity and pressure. Only four di�erent grids have been used tohek the parallel performane in ase of the p-re�nement (see Table 2). Eahgrid ontains four spetral elements. The order of the approximating polynomialvaries from 4 to 10 and is the same in all the variables. A growth of the poly-nomial order in the p-re�nement ase will inrease the number of nodes per elland so does the amount of omputational e�ort per ell. However, the highestparallel eÆieny will be ahieved in ase the number of ells equals the number



Table 1. The di�erent grids used for the investigation of the h�re�nements.Spetral GLL- size of # L2 normelements order global system iterations Veloity Vortiity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�24� 4 4 1027 232 5.0 10�5 1.6 10�3 7.1 10�46� 6 4 2307 326 5.2 10�6 2.8 10�4 6.9 10�58� 8 4 4099 431 1.1 10�6 8.7 10�5 1.3 10�510� 10 4 6403 569 3.2 10�7 3.5 10�5 3.6 10�612� 12 4 9219 707 1.2 10�7 1.7 10�5 1.3 10�6
Table 2. The di�erent grids used for the investigation of the p�re�nements.Spetral GLL- size of # L2 normelements order global system iterations Veloity Vortiity Pressure2� 2 4 259 132 9.2 10�4 4.8 10�2 1.8 10�22� 2 6 579 224 8.7 10�6 7.5 10�4 1.9 10�32� 2 8 1027 305 6.5 10�8 7.1 10�6 1.6 10�62� 2 10 1603 388 4.4 10�10 4.5 10�8 7.6 10�9

of proessors. If the number of proessors is larger than the number of ells, pro-essors will beome idle and for parallel performane and salability this resultis dramati.We remark that four spetral elements and a GLL-order of 8 gives a higherauray ompared to the grid with 12� 12 spetral elements and a GLL-orderof 4. Moreover, the systems to solve are muh smaller whereas the number ofiterations is halved.4.2 Parallel platforms and implementationThe alulations have been performed on{ Cray T3E system Vermeer (named after the Duth painter) at HP�C with128 user PEs interonneted by the fast 3D torus interonnet network with apeak performane of 76.8 Gigaop/s. Eah PE is on�gured with 128 Mbytesof loal memory, providing more than 16 Gbytes of globally addressabledistributed memory.{ The SGI Origin 3800 Teras with 1024 500 MHz RI 14000 proessors, subdi-vided into six partitions, two (interative) 32-CPU partitions and four bathpartitions of 64, 128, 256 and 512 CPU's, respetively. The theoretial peakperformane is 1 Teraop/s. The Teras is a CC-NUMA mahine, Cahe-Coherent, Non Uniform Memory Aess. For the user the omplete memoryis aessible, though as a matter of fat the memory is distributed along all



proessors. The memory aess is not uniform, beause eah proessor anaess its own memory muh faster than the memory of other proessors.To get good portable programs whih may run on distributed-memory multi-proessors, networks of workstations as well as shared-memory mahines we useMPI, Message Passing Interfae. At this moment, standard or bloking ommu-niation mode is used: a send all does not return until the message data havebeen safely stored away so that the sender is free to aess and overwrite thesend bu�er. All routines have been implemented in FORTRAN 90.4.3 Parallel performane and speedupsThe grid reation and the alulations of the global systems an be performedompletely in parallel and is very fast ompared to the solution of the globalsystems. However, the onversion of the ell distribution to the parallel CSR-format distribution beomes more expensive in ase more proessors are involved.Table 3 shows wall-lok timings for the Teras of this onversion simulated on asingle proessor and we do not expet a high parallel speedup for this proessthat is mainly dominated by ommuniation.
Table 3. Teras: Wall-lok timings in seonds for onversion of ell-wise distributionof grid with 2� 2 spetral elements into global matrix in CSR-format, simulated on asingle proessor. # Proessors GLL-orderonverted for 4 6 8 101 0.03 0.12 0.35 0.862 0.04 0.17 0.51 1.254 0.07 0.28 1.01 2.408 0.12 0.65 2.31 5.3016 0.25 1.20 5.85 13.2532 0.69 4.78 13.64 30.67

In Fig. 3, speedups for the solution part are given for grids with di�erentnumbers of spetral elements. The speedups, obtained at Teras and Vermeer, areahieved for 2,4,8,16 and 32 proessors. The speedup Sp is de�ned as the quotientof the wall-lok time measured on one proessor and the time measured on pproessors. Obviously, the speedup on the distributed memory mahine Vermeeris muh higher than on the virtual shared memory Teras (f. Fig. 3a and 3b).Sine the SGI MPI-implementation on Teras takes into aount that the CPUsshare the memory, we did not expet this behaviour. The disappointing speedupmay be dominated by the slow ommuniation ompared to its high performane.To get an indiation of the performane of both mahines, the solution times forgrid 8� 8 on 1 and 32 proessors are listed in Table 4.
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Fig. 3. Speedups ahieved on both Vermeer and Teras for di�erent kind of grids.Table 4. Wall-lok timings in seonds for the solution part obtained for the grid of12� 12 spetral elements and GLL-order=4.Teras Vermeerp = 1 p = 32 p = 1 p = 3246.9 3.8 314.9 16.0
If we add per spetral element two more GLL-olloation points per diretion,the omputational e�orts inrease and the speedup on Teras is nearly twieas muh (see Fig. 3). Finally, Fig. 3d demonstrates that the eÆieny of theCG-solution method depends on the GLL-order. Atually, the model problemdisussed here appears to be too small for both mahines.

5 Conlusions and future plansThe LSQSEM method results in symmetri and positive de�nite systems oflinear equations whih an be solved by CG in parallel. At the moment, a Jaobi



preonditioner is used that does not onverge very fast. Sine the total exeutiontime is dominated by solving the linear systems it is neessary to onentrateon good parallelizable preonditioners for these systems. Obviously, we have toomplete the parallelization of the onversion part and to redue ommuniationtime by making use of nonbloking MPI-routines. The exeution times listed inFig. 4 indiate that the parallel implementation is very suitable for large-saleproblems arising in sienti� omputing.
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